Integrable Models and the Higher Dimensional Representations of Graded Lie Algebras

نویسنده

  • J. C. Brunelli
چکیده

We construct a zero curvature formulation, in superspace, for the sTB-B hierarchy which naturally reduces to the zero curvature condition in terms of components, thus solving one of the puzzling features of this model. This analysis, further, suggests a systematic method of constructing higher dimensional representations for the zero curvature condition starting with the fundamental representation. We illustrate this with the examples of the sTB hierarchy and the sKdV hierarchy. This would be particularly useful in constructing explicit higher dimensional representations of graded Lie algebras. 1 E-mail address: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Deformation Theory of Lie Algebras

This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...

متن کامل

Deformation of Outer Representations of Galois Group

To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...

متن کامل

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

Quantum Super-Integrable Systems as Exactly Solvable Models

We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between superintegrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dimensional representations of the quadratic algebras are thus constructed in a way analogous to that ...

متن کامل

Lecture 6: Kac-moody Algebras, Reductive Groups, and Representations

We start by introducing Kac-Moody algebras and completing the classification of finite dimensional semisimple Lie algebras. We then discuss the classification of finite dimensional representations of semisimple Lie algebras (and, more generally, integrable highest weight representations of Kac-Moody algebras). We finish by discussing the structure and representation theory of reductive algebrai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997